Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Nat Prod ; 87(4): 1187-1196, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38632902

RESUMO

Psammaplins are sulfur containing bromotyrosine alkaloids that have shown antitumor activity through the inhibition of class I histone deacetylases (HDACs). The cytotoxic properties of psammaplin A (1), the parent compound, are related to peroxisome proliferator-activated receptor γ (PPARγ) activation, but the mechanism of action of its analogs psammaplin K (2) and bisaprasin (3) has not been elucidated. In this study, the protective effects against oxidative stress of compounds 1-3, isolated from the sponge Aplysinella rhax, were evaluated in SH-SY5Y cells. The compounds improved cell survival, recovered glutathione (GSH) content, and reduced reactive oxygen species (ROS) release at nanomolar concentrations. Psammaplins restored mitochondrial membrane potential by blocking mitochondrial permeability transition pore opening and reducing cyclophilin D expression. This effect was mediated by the capacity of 1-3 to activate PPARγ, enhancing gene expression of the antioxidant enzymes catalase, nuclear factor E2-related factor 2 (Nrf2), and glutathione peroxidase. Finally, HDAC3 activity was reduced by 1-3 under oxidative stress conditions. This work is the first description of the neuroprotective activity of 1 at low concentrations and the mechanism of action of 2 and 3. Moreover, it links for the first time the previously described effects of 1 in HDAC3 and PPARγ signaling, opening a new research field for the therapeutic potential of this compound family.


Assuntos
Dissulfetos , Estresse Oxidativo , PPAR gama , Tirosina/análogos & derivados , PPAR gama/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Animais , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Neurônios/efeitos dos fármacos , Histona Desacetilases/metabolismo , Histona Desacetilases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Poríferos/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Glutationa/metabolismo , Alcaloides/farmacologia , Alcaloides/química , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
2.
World J Microbiol Biotechnol ; 40(5): 148, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539025

RESUMO

Gnomoniopsis smithogilvyi (Gnomoniaceae, Diaporthales) is the main causal agent of chestnut brown rot on sweet chestnut worldwide. The rotting of nuts leads to alterations in the organoleptic qualities and decreased fruit production, resulting in significant economic losses. In 2021, there was an important outbreak of chestnut rot in southern Galicia (Spanish northwest). The profile of secondary metabolites from G. smithogilvyi was studied, especially to determine its capability for producing mycotoxins, as happens with other rotting fungi, due to the possible consequences on the safety of chestnut consumption. Secondary metabolites produced by isolates of G. smithogilvyi growing in potato dextrose agar (PDA) medium were identified using liquid chromatography coupled with high-resolution mass spectrometry. Three metabolites with interesting pharmacological and phyto-toxicological properties were identified based on their exact mass and fragmentation patterns, namely adenosine, oxasetin, and phytosphingosine. The capacity of G. smithogilvyi to produce adenosine in PDA cultures was assessed, finding concentrations ranging from 176 to 834 µg/kg. Similarly, the production of mycotoxins was ruled out, indicating that the consumption of chestnuts with necrotic lesions does not pose a health risk to the consumer in terms of mycotoxins.


Assuntos
Ascomicetos , Micotoxinas , Nozes , Adenosina , Meios de Cultura
3.
Mar Drugs ; 21(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999414

RESUMO

The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels.


Assuntos
Ciguatera , Ciguatoxinas , Neuroblastoma , Camundongos , Animais , Humanos , Ciguatoxinas/toxicidade , Células HEK293 , Canais de Sódio/metabolismo
4.
Sci Rep ; 13(1): 10139, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349369

RESUMO

Cyclophilins are a family of chaperones involved in inflammation and cell death. Cyclophilin B is released by inflammatory cells and acts through the receptor CD147, affecting matrix metalloproteases release, whilst cyclophilin D participates in hypoxia-induced apoptosis. Previous studies related hormones like estradiol or prolactin to these proteins, however, their blood concentrations across the menstrual cycle have not been determined. In this work, eleven healthy women (BMI: 21.8 kg/m2) were monitored during a single menstrual cycle, making blood extractions at follicular, periovulatory and mid-luteal phases. Hormone and cyclophilin levels were determined in each phase. Statistical differences were determined by repeated measures ANOVA and estimated marginal means tests, or by Friedman and Dunn-Bonferroni tests for parametric and non-parametric variables, respectively. Bivariate correlations were evaluated with the Spearman coefficient. Cyclophilin B concentrations presented significant differences during the menstrual cycle (p = 0.012). The highest levels of this protein were found at follicular extraction, followed by a decrease at periovulatory phase and a slight increase at mid-luteal phase. Cyclophilin D showed the same profile, although statistical significance was not reached. This immunophilin exhibited a positive correlation with luteinizing hormone at periovulatory phase (r = 0.743, p = 0.009) and with follicle stimulating hormone at mid-luteal phase (r = 0.633, p = 0.036). This is the first study describing the changes in cyclophilin B concentrations across the menstrual cycle, as well as the association of luteinizing and follicle stimulating hormones with cyclophilin D. These results suggest a role of these proteins in the cyclic inflammatory events that affect female reproductive system that should be explored.


Assuntos
Ciclofilinas , Ciclo Menstrual , Feminino , Humanos , Peptidil-Prolil Isomerase F , Hormônio Luteinizante , Hormônio Foliculoestimulante , Estradiol , Progesterona
5.
Int Immunopharmacol ; 120: 110351, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37235965

RESUMO

Inflammation is the leading subjacent cause of many chronic diseases. Despite several studies in the last decades, the molecular mechanism involving its pathophysiology is not fully known. Recently, the implication of cyclophilins in inflammatory-based diseases has been demonstrated. However, the main role of cyclophilins in these processes remains elusive. Hence, a mouse model of systemic inflammation was used to better understand the relationship between cyclophilins and their tissue distribution. To induce inflammation, mice were fed with high-fat diet for 10 weeks. In these conditions, serum levels of interleukins 2 and 6, tumour necrosis factor-α, interferon-ϒ, and the monocyte chemoattractant protein 1 were elevated, evidencing a systemic inflammatory state. Then, in this inflammatory model, cyclophilins and CD147 profiles in the aorta, liver, and kidney were studied. The results demonstrate that, upon inflammatory conditions, cyclophilins A and C expression levels were increased in the aorta. Cyclophilins A and D were augmented in the liver, meanwhile, cyclophilins B and C were diminished. In the kidney, cyclophilins B and C levels were elevated. Furthermore, CD147 receptor was also increased in the aorta, liver, and kidney. In addition, when cyclophilin A was modulated, serum levels of inflammatory mediators were decreased, indicating a reduction in systemic inflammation. Besides, the expression levels of cyclophilin A and CD147 were also reduced in the aorta and liver, when cyclophilin A was modulated. Therefore, these results suggest that each cyclophilin has a different profile depending on the tissue, under inflammatory conditions.


Assuntos
Ciclofilina A , Ciclofilinas , Animais , Camundongos , Ciclofilinas/metabolismo , Ciclofilina A/farmacologia , Inflamação/metabolismo
6.
Front Physiol ; 14: 1127468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935755

RESUMO

Cyclophilins are chaperone proteins that play important roles in signal transduction. Among them, cyclophilins A, B, C, and D were widely associated with inflammation and cardiovascular diseases. Cyclophilins A and C have been proposed as coronary artery disease biomarkers. However, less is known about their relationship with cardiovascular risk factors. Therefore, this study aimed to determine the association between cyclophilin A, B, C, and D and cardiovascular risk factors in coronary artery disease. Serum levels of cyclophilins were measured in 167 subjects (subdivided according to cardiovascular risk factors presence). This study reveals that cyclophilin A and C are elevated in patients regardless of the risk factors presence. Moreover, cyclophilin B is elevated in male patients with hypertension, type 2 diabetes, or high glucose levels. In addition, cyclophilins A, B, and C were significantly correlated with cardiovascular risk factors, but only cyclophilin B was associated with type 2 diabetes. The multivariate analysis strengthens the predictive value for coronary artery disease presence of cyclophilin A (>8.2 ng/mL) and cyclophilin C (>17.5 pg/mL) along with the cardiovascular risk factors tobacco, hypertension, dyslipidemia, and high glucose and cholesterol levels. Moreover, the risk of coronary artery disease is increased in presence of cyclophilin B levels above 63.26 pg/mL and with hypertension or dyslipidemia in male patients. Consequently, cyclophilins A and C serum levels are reinforced as useful coronary artery disease biomarkers, meanwhile, cyclophilin B is a valuable biomarker in the male population when patients are also suffering from hypertension or dyslipidemia.

7.
Sci Total Environ ; 858(Pt 3): 160111, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370778

RESUMO

Emerging marine biotoxins such as ciguatoxins and pyrethroid compounds, widely used in agriculture, are independently treated as environmental toxicants. Their maximum residue levels in food components are set without considering their possible synergistic effects as consequence of their interaction with the same cellular target. There is an absolute lack of data on the possible combined cellular effects that biological and chemical pollutants, may have. Nowadays, an increasing presence of ciguatoxins in European Coasts has been reported and these toxins can affect human health. Similarly, the increasing use of phytosanitary products for control of food plagues has raised exponentially during the last decades due to climate change. The lack of data and regulation evaluating the combined effect of environmental pollutants with the same molecular target led us to analyse their in vitro effects. In this work, the effects of ciguatoxins and pyrethroids in human sodium channels were investigated. The results presented in this study indicate that both types of compounds have a profound synergistic effect in voltage-dependent sodium channels. These food pollutants act by decreasing the maximum peak inward sodium currents and hyperpolarizing the sodium channels activation, effects that are boosted by the simultaneous presence of both compounds. A fact that highlights the need to re-evaluate their limits in feedstock as well as their potential in vivo toxicity considering that they act on the same cellular target. Moreover, this work sets the cellular basis to further apply this type of studies to other water and food pollutants that may act synergistically and thus implement the corresponding regulatory limits taking into account its presence in a healthy diet.


Assuntos
Poluentes Ambientais , Praguicidas , Humanos , Toxinas Marinhas , Canais de Sódio
8.
Mar Drugs ; 20(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286475

RESUMO

Seaweeds are a great source of compounds with cytotoxic properties with the potential to be used as anticancer agents. This study evaluated the cytotoxic and proteasome inhibitory activities of 12R-hydroxy-bromosphaerol, 12S-hydroxy-bromosphaerol, and bromosphaerol isolated from Sphaerococcus coronopifolius. The cytotoxicity was evaluated on malignant cell lines (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, and SK-MEL-28) using the MTT and LDH assays. The ability of compounds to stimulate the production of hydrogen peroxide (H2O2) and to induce mitochondrial dysfunction, the externalization of phosphatidylserine, Caspase-9 activity, and changes in nuclear morphology was also studied on MCF-7 cells. The ability to induce DNA damage was also studied on L929 fibroblasts. The proteasome inhibitory activity was estimated through molecular docking studies. The compounds exhibited IC50 values between 15.35 and 53.34 µM. 12R-hydroxy-bromosphaerol and 12S-hydroxy-bromosphaerol increased the H2O2 levels on MCF-7 cells, and bromosphaerol induced DNA damage on fibroblasts. All compounds promoted a depolarization of mitochondrial membrane potential, Caspase-9 activity, and nuclear condensation and fragmentation. The compounds have been shown to interact with the chymotrypsin-like catalytic site through molecular docking studies; however, only 12S-hydroxy-bromosphaerol evidenced interaction with ALA20 and SER169, key residues of the proteasome catalytic mechanism. Further studies should be outlined to deeply characterize and understand the potential of those bromoditerpenes for anticancer therapeutics.


Assuntos
Antineoplásicos , Neuroblastoma , Rodófitas , Alga Marinha , Humanos , Inibidores de Proteassoma/farmacologia , Peróxido de Hidrogênio/farmacologia , Citotoxinas/farmacologia , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Fosfatidilserinas/farmacologia , Complexo de Endopeptidases do Proteassoma , Células CACO-2 , Caspase 9 , Quimotripsina/farmacologia , Rodófitas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose
9.
Food Chem Toxicol ; 168: 113361, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35970269

RESUMO

Enniatins (ENNs) A1 and B1 are non-regulated mycotoxins produced by Fusarium spp. that commonly occur in different types of food. These toxins are cytotoxic in several cell lines, but their mechanism of action is unclear. In this study, the cytotoxic effects of ENNs A1 and B1 in SH-SY5Y human neuroblastoma cells were analysed. Moreover, to better understand their mechanism of action, mitochondrial function, reactive oxygen species (ROS) levels and calcium fluxes were monitored. ENNs A1 and B1 reduced cell viability, presenting IC50 values of 2.0 and 2.7 µM, respectively. Both toxins induced caspase-dependent apoptosis, but only ENN A1 increased ROS production. Apoptotic cell death seems to be triggered by the increase in cytosolic calcium produced by both ENNs, since the toxins altered Ca2+ homeostasis by depleting intracellular reservoirs. Finally, binary combinations of ENN A1, ENN B1, ENN A and ENN B were tested. All mixtures resulted in an antagonistic effect, with the exception of ENN A and ENN B1 combination, which produced an additive effect. The results presented in this study provide the first evidence of ENNs A1 and B1 effects on calcium fluxes, providing new insights into the mechanism of action of these mycotoxins.


Assuntos
Depsipeptídeos , Micotoxinas , Neuroblastoma , Cálcio , Depsipeptídeos/toxicidade , Homeostase , Humanos , Micotoxinas/análise , Espécies Reativas de Oxigênio
10.
ACS Chem Neurosci ; 13(16): 2449-2463, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35901231

RESUMO

Neuroprotective properties of five previously described furanoditerpenes 1-5, isolated from Spongia (Spongia) tubulifera, were evaluated in an in vitro oxidative stress model in SH-SY5Y cells. Dose-response treatments revealed that 1-5 improved cell survival at nanomolar concentrations through the restoration of mitochondrial membrane potential and the reduction of reactive oxygen species. Their ability to prevent the mitochondrial permeability transition pore opening was also assessed, finding that 4 and 5 inhibited the channel at 0.001 µM. This inhibition was accompanied by a decrease in the expression of cyclophilin D, the main regulator of the pore, which was also reduced by 1 and 2. However, the activation of ERK and GSK3ß, upstream modulators of the channel, was not affected by compounds. Therefore, their ability to bind cyclophilin D was evaluated by surface plasmon resonance, observing that 2-5 presented equilibrium dissociation constants in the micromolar range. All compounds also showed affinity for cyclophilin A, being 1 selective toward this isoform, while 2 and 5 exhibited selectivity for cyclophilin D. When the effects on the intracellular expression of cyclophilins A-C were determined, it was found that only 1 decreased cyclophilin A, while cyclophilins B and C were diminished by most compounds, displaying enhanced effects under oxidative stress conditions. Results indicate that furanoditerpenes 1-5 have mitochondrial-mediated neuroprotective properties through direct interaction with cyclophilin D. Due to the important role of this protein in oxidative stress and inflammation, compounds are promising drugs for new therapeutic strategies against neurodegeneration.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Poríferos , Animais , Ciclofilina A , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fármacos Neuroprotetores/farmacologia
11.
Food Chem Toxicol ; 154: 112308, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34062223

RESUMO

Co-occurrence of emerging and regulated mycotoxins in contaminated samples has been widely documented, but studies about their combined toxicity are scarce. In this report, the regulated mycotoxins deoxynivalenol, fumonisin B1 and zearalenone, and the emerging ones enniatin A, enniatin B and beauvericin were tested in SH-SY5Y human neuroblastoma cells. Their individual and binary combined effects on cell viability and mitochondrial function were evaluated. The results with individual mycotoxins revealed that deoxynivalenol and emerging mycotoxins were the most damaging to neuronal cells, presenting IC50 values between 0.35 and 2.4 µM. Interestingly, non-regulated mycotoxins triggered apoptosis by affecting to mitochondrial membrane potential. However, when regulated and non-regulated mycotoxins were binary mixed, antagonistic effects were found in all cases. Finally, cow feed and milk extracts were analysed by UHPLC-MS/MS, detecting the presence of several mycotoxins included in this study. These extracts were tested in neuroblastoma cells, and damaging effects on cell viability were found. Although binary combinations of mycotoxins produced antagonistic effects, their mixture in natural matrixes induces greater effects than expected. Therefore, it would be interesting to explore the matrix influence on mycotoxin toxicity, and to continue studying the neurotoxic mechanism of action of emerging mycotoxins, as they could be a health hazard.


Assuntos
Mitocôndrias/efeitos dos fármacos , Micotoxinas/toxicidade , Neurônios/efeitos dos fármacos , Ração Animal/análise , Animais , Apoptose/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos/análise , Humanos , Leite/química , Micotoxinas/análise , Espectrometria de Massas em Tandem
12.
ACS Chem Neurosci ; 12(13): 2336-2346, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34110771

RESUMO

Anhydroexfoliamycin, a secondary metabolite from Streptomyces, has shown antioxidant properties in primary cortical neurons reducing neurodegenerative hallmarks diseases, both in vitro and in vivo models. Activated microglia, in the central nervous system, plays a crucial role in neuroinflammation and is associated with neurodegeneration. Therefore, the aim of the present study was to determine the anti-inflammatory and antioxidant potential of the anhydroexfoliamycin over microglia BV2 cells. Neuroinflammation was simulated by incubation of microglia cells in the presence of lipopolysaccharide to activate proinflammatory transduction pathways. Moreover, a coculture of neuron SH-SY5Y and microglia BV2 cells was used to evaluate the neuroprotective properties of the Streptomyces metabolite. When microglia cells were preincubated with anhydroexfoliamycin, proinflammatory pathways, such as the translocation of the nuclear factor κB, the phosphorylation of c-Jun N-terminal kinase, and the inducible nitric oxide synthase expression, were inhibited. In addition, intracellular reactive oxygen species generation and the liberation of nitric oxide, interleukin 6, and tumor necrosis factor α were also decreased. Besides, the Streptomyces-derived compound showed antioxidant properties promoting the translocation of the factor erythroid 2-related factor 2 and protecting the SH-SY5Y cells from the neurotoxic mediators released by activated microglia. The effects of this compound were at the same level as the immunosuppressive drug cyclosporine A. Therefore, these results indicate that anhydroexfoliamycin is a promising tool to control microglia-driven inflammation with therapeutic potential in neuroinflammation.


Assuntos
Microglia , Streptomyces , Humanos , Inflamação/tratamento farmacológico , Mediadores da Inflamação , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Streptomyces/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Chem Res Toxicol ; 34(3): 865-879, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512997

RESUMO

Azaspiracids (AZAs) are marine toxins produced by dinoflagellates belonging to the genera Azadinium and Amphidoma that caused human intoxications after consumption of contaminated fishery products, such as mussels. However, the exact mechanism for the AZA induced cytotoxic and neurotoxic effects is still unknown. In this study several pharmacological approaches were employed to evaluate the role of anion channels on the AZA effects that demonstrated that cellular anion dysregulation was involved in the toxic effects of these compounds. The results presented here demonstrated that volume regulated anion channels (VRACs) are affected by this group of toxins, and, because there is not any specific activator of VRACs besides the intracellular application of GTPγ-S molecule, this group of natural compounds could represent a powerful tool to analyze the role of these channels in cellular homeostasis. In addition to this, in this work, a detailed pharmacological approach was performed in order to elucidate the anion channels present in human HEK293 cells as well as their regulation by the marine toxins azaspiracids. Altogether, the data presented here demonstrated that the effect of azaspiracids in human cells was completely dependent on ATP-regulated anion channels, whose upregulation by these toxins could lead to regulatory volume decrease and underlie the reported toxicity of these compounds.


Assuntos
Canais de Cloreto/metabolismo , Toxinas Marinhas/farmacologia , Compostos de Espiro/farmacologia , Trifosfato de Adenosina/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Toxinas Marinhas/química , Compostos de Espiro/química
14.
ACS Chem Neurosci ; 12(1): 150-162, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33353294

RESUMO

The oceans harbor a great reservoir of molecules with unknown bioactivities, which could be useful for the treatment of illnesses that nowadays have no cure, such as neurodegenerative diseases. In this work, we evaluated the neuroprotective potential of the marine Fijian compounds tavarua deoxyriboside A and jasplakinolide against oxidative stress and neuroinflammation, crucial mechanisms in neurodegeneration. Both metabolites protected SH-SY5Y human neuroblastoma cells from H2O2 damage, improving mitochondrial function and activating the antioxidant systems of cells. These effects were mediated by their ability of inducing Nrf2 translocation. In BV2 microglial cells activated with lipopolysaccharide, Fijian metabolites also displayed promising results, decreasing the release of proinflammatory mediators (ROS, NO, cytokines) through the reduction of gp91 and NFkB-p65 expression. Finally, we performed a coculture among both cell lines, in which treatment with compounds protected SH-SY5Y cells from activated microglia, corroborating their neuroprotective effects. These results suggest that tavarua deoxyriboside A and jasplakinolide could be used as candidate molecules for further studies against neurodegeneration.


Assuntos
Depsipeptídeos , Fármacos Neuroprotetores , Linhagem Celular Tumoral , Depsipeptídeos/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos/farmacologia , Microglia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo
15.
Mar Drugs ; 18(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679743

RESUMO

Laxaphycins are a family of non-ribosomal lipopeptides that have been isolated from several cyanobacteria. Some of these compounds have presented cytotoxic activities, but their mechanism of action is poorly understood. In this work, the already described laxaphycins B and B3, and acyclolaxaphycins B and B3 were isolated from the marine cyanobacteria Anabaena torulosa. Moreover, two new acyclic compounds, [des-(Ala4-Hle5)] acyclolaxaphycins B and B3, were purified from the herviborous gastropod Stylocheilus striatus, with this being the first description of biotransformed laxaphycins. The structure of these new compounds was elucidated, together with the absolute configuration of acyclolaxaphycins B and B3. The bioactivities of the six peptides were determined in SH-SY5Y human neuroblastoma cells. Laxaphycins B and B3 were cytotoxic (IC50: 1.8 and 0.8 µM, respectively) through the induction of apoptosis. In comparison, acyclic laxaphycins did not show cytotoxicity but affected mitochondrial functioning, so their effect on autophagy-related protein expression was analyzed, finding that acyclic peptides affected this process by increasing AMPK phosphorylation and inhibiting mTOR. This work confirms the pro-apoptotic properties of cyclic laxaphycins B and is the first report indicating the effects on autophagy of their acyclic analogs. Moreover, gastropod-derived compounds presented ring opening and amino-acids deletion, a biotransformation that had not been previously described.


Assuntos
Antineoplásicos/farmacologia , Neuroblastoma/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Peptídeos Cíclicos/química , Fosforilação , Conformação Proteica , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
16.
J Nat Prod ; 83(7): 2299-2304, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32628481

RESUMO

The chemical investigation of the sponge Stylissa aff. carteri collected around Futuna Islands in the Pacific Ocean led to the isolation of three new dimeric pyrrole 2-aminoimidazole alkaloids (PIAs). Futunamine (1) features an unprecedented pyrrolo[1,2-c]imidazole core, while two other new dimeric PIAs were identified as analogues of palau'amine. Together with other known PIAs isolated from this species, they were shown to exhibit anti-inflammatory and neuroprotective activities.


Assuntos
Alcaloides/química , Imidazóis/química , Pirróis/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Humanos , Imidazóis/isolamento & purificação , Ilhas , Microglia/citologia , Microglia/efeitos dos fármacos , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Oceano Pacífico , Pirróis/isolamento & purificação , Análise Espectral/métodos
17.
Biomed Pharmacother ; 128: 110275, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32480221

RESUMO

Cancer is one of the major threats to human health and, due to distinct factors, it is expected that its incidence will increase in the next decades leading to an urgent need of new anticancer drugs development. Ongoing experimental and clinical observations propose that cancer cells with stem-like properties (CSCs) are involved on the development of lung cancer chemoresistance. As tumour growth and metastasis can be controlled by tumour-associated stromal cells, the main goal of this study was to access the antitumor potential of five bromoterpenes isolated from Sphaerococcus coronopifolius red alga to target CSCs originated in a co-culture system of fibroblast and lung malignant cells. Cytotoxicity of compounds (10-500 µM; 72 h) was evaluated on monocultures of several malignant and non-malignant cells lines (HBF, BEAS-2B, RenG2, SC-DRenG2) and the effects estimated by MTT assay. Co-cultures of non-malignant human bronchial fibroblasts (HBF) and malignant human bronchial epithelial cells (RenG2) were implemented and the compounds ability to selectively kill CSCs was evaluated by sphere forming assay. The interleucine-6 (IL-6) levels were also determined as cytokine is crucial for CSCs. Regarding the monocultures results bromosphaerol selectively eliminated the malignant cells. Both 12S-hydroxy-bromosphaerol and 12R-hydroxy-bromosphaerol steroisomers were cytotoxic towards non-malignant bronchial BEAS-2B cell line, IC50 of 4.29 and 4.30 µM respectively. However, none of the steroisomers induced damage in the HBFs. As to the co-cultures, 12R-hydroxy-bromosphaerol revealed the highest cytotoxicity and ability to abrogate the malignant stem cells; however its effects were IL-6 independent. The results presented here are the first evidence of the potential of these bromoterpenes to abrogate CSCs opening new research opportunities. The 12R-hydroxy-bromosphaerol revealed to be the most promising compound to be test in more complex living models.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Rodófitas , Terpenos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Interleucina-6/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Rodófitas/química , Terpenos/isolamento & purificação , Microambiente Tumoral
18.
Toxicon ; 177: 16-24, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32056831

RESUMO

Palytoxin is an emergent toxin in Europe and one of the most toxic substances know to date. The toxin disrupts the physiological functioning of the Na+/K+-ATPase converting the enzyme in a permeant cation channel. Human intoxications by PLTX after consumption of contaminated fishery products are a serious health issue and can be fatal. Several reports have previously investigated the oral and intraperitoneal toxicity of PLTX in mice. However, in all cases short observation periods (24 and 48 h) after toxin administration were evaluated. In this work, single oral or intraperitoneal doses of PLTX were administered to healthy mice and surviving animals were followed up for 96 h. The data obtained here allowed us to calculate the oral and intraperitoneal lethal doses 50 (LD50) which were in the range of the values previously described. Surprisingly, the oral NOAEL for PLTX was more than 10 times lower than that previously described, a fact that indicates the need for the reevaluation of the levels of the toxin in edible fishery products.


Assuntos
Acrilamidas/toxicidade , Venenos de Cnidários/toxicidade , Testes de Toxicidade Aguda , Animais , Humanos , Dose Letal Mediana , Camundongos , Nível de Efeito Adverso não Observado , ATPase Trocadora de Sódio-Potássio/metabolismo
19.
Mol Nutr Food Res ; 64(2): e1901017, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837654

RESUMO

SCOPE: Fruit-derived drinks consumption is considered beneficial due to the antioxidant and neuroprotective effects of polyphenols separately, but studies including their total constituents are scarce. In this work, the antioxidant and anti-inflammatory neuroprotective effects of apple-derived beverages are determined in a mouse model of lipopolysaccharide (LPS)-induced inflammation. METHODS AND RESULTS: Preliminary antioxidant and neuroinflammatory experiments are carried out with 15 drink polyphenolic extracts in SH-SY5Y and BV2 cells, using H2 O2 as pro-oxidant and LPS as pro-inflammatory stimulus, respectively. Extracts improve antioxidant systems functioning and present neuroprotective mitochondrial-related effects. In microglia, extracts reduce reactive oxygen species and modulate cytokine release. To better mimic human consumption, four concentrated dealcoholized apple-derived drinks (three ciders and apple juice) are supplied to mice for 7 days in substitution of drinking water. Mice treated with beverages present reduced brain oxidative stress and inflammatory markers after LPS injection. Interestingly, genetic expression of antioxidant enzymes and glutathione levels are also greatly augmented after drink intake. CONCLUSION: The results confirm the antioxidant and anti-inflammatory-mediated neuroprotective properties of apple-derived drinks, suggesting that their consumption could be a good approach for prevention of neurodegenerative disorders. To the authors' knowledge, this is the first description of cider neuroprotective effects.


Assuntos
Antioxidantes/fisiologia , Inflamação/dietoterapia , Malus , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Sucos de Frutas e Vegetais , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Malus/química , Camundongos , Microglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Espanha , Vinho
20.
Cell Mol Neurobiol ; 40(4): 603-615, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31729596

RESUMO

Gracilins are diterpenes derivative, isolated from the marine sponge Spongionella gracilis. Natural gracilins and synthetic derivatives have shown antioxidant, immunosuppressive, and neuroprotective capacities related to the affinity for cyclophilins. The aim of this work was to study anti-inflammatory and immunosuppressive pathways modulated by gracilin L and two synthetic analogues, compound 1 and 2, on a cellular model of inflammation. In this way, the murine BV2 microglia cell line was used. To carry out the experiments, microglia cells were pre-treated with compounds for 1 h and then stimulated with lipopolysaccharide for 24 h to determine reactive oxygen species production, mitochondrial membrane potential, the release of nitric oxide, interleukin-6 and tumor necrosis factor-α and the expression of Nuclear factor-erythroid 2-related factor 2, Nuclear Factor-κB, the inducible nitric oxide synthase, and the cyclophilin A. Finally, a co-culture of neuron SH-SY5Y and microglia BV2 cells was used to check the neuroprotective effect of these compounds. Cyclosporine A was used as a control of effect. The compounds were able to decrease inflammatory mediators, the expression of inflammatory target proteins as well as they activated anti-oxidative mechanism upon inflammatory conditions. For this reason, natural and synthetic gracilins could be interesting for developing anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Animais , Anti-Inflamatórios/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclosporina/farmacologia , Diterpenos/química , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA